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Abstract. The theory of Bogoliubov contains the prescription of replacing the ground-state
mode a0√

V
by a constantb. In a previous contribution, we showed that the Bogoliubov model

was thermodynamically unstable. We stabilized this model by adding ‘forward scattering’ terms.
In this paper we exploit the fact that it is not compulsary to takeb equal toc = 〈a0〉√

V
. We show

that if b = c the Bogoliubov theory does not have a satisfactory thermodynamics. We prove
that it is possible to make a proper choice of the ground-state mode, i.e.b as a function ofc,
in order to obtain the correct excitation spectrum and thermodynamically a second-order phase
transition, as is compulsory for a theory of superfluidity.

1. Introduction

During the 50 years since Bogoliubov [1, 2] isolated the zero momentum condensed state
in the weakly imperfect Bose gas and applied his celebrated canonical transformation in an
attempt to give a microscopic explanation of superfluidity, relatively little progress has been
made in order to make the theory compatible with first principles. Ultimately this would
provide a really microscopic understanding of superfluidity. One of the main problems is
to show the persistence of the zero momentum Bose condensation, taking place in the free
Bose gas, in the presence of a realistic two-body interaction. This is still an open question
on the rigorous mathematical level. It is this very condensation which is the basis of the
theory of Bogoliubov.

Recent important progress in the rigorous study of the ‘diagonal models’ [3–6], i.e.
truncated versions of the full Hamiltonian which are expressed in terms of the occupation
number operators alone, on the one hand, give only partial information about the possible
behaviour of the original system and, on the other hand, do not provide the nature of the
equilibrium states. These ‘diagonal’ models are in fact only thermodynamically solvable
models and the results [3–6] are related to expectation values of observables, which are
functions of the occupation number operators. However, these results are impressive in
the sense that they show persistance of the Bose condensate in these non-trivial models.
Attempts to extend this result to non-diagonal models, for example to the so-called ‘pair
Hamiltonian’ model [7–11] or to Bogoliubov’s original weakly coupled imperfect Bose gas
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‖ E-mail address: andré.verbeure@fys.kuleuven.ac.be
¶ E-mail address: zagrebnov@cpt.univ-mrs.fr

0305-4470/97/144895+19$19.50c© 1997 IOP Publishing Ltd 4895



4896 N Angelescu et al

[12, 13], are either far from complete, or lead to ‘unphysical’ features, such as a gap in
the spectrum of excitations, contradicting the Hugenholtz–Pines–Gavoret–Nozières analysis
[14, 15] about the absence of a gap (generally related to the Goldstone theorem) for the full
Hamiltonian.

To be precise, a system of identical bosons of massm in a cubic box3 ⊆ R3 of volume
V = L3, with periodic boundary conditions for the wavefunctions, is described by the full
two-body interaction Hamiltonian:

HV =
∑
k

εka
∗
k ak +

1

2V

∑
k;k′,q

v(q)a∗k+qa
∗
k′−qak′ak (1.1)

where the sum runs over the set

2π

L
Z3 and εk = k2

2m
.

a#
k are the boson creation/annihilation operators in the one-particle stateψk(x) = V −1/2eikx ,
x ∈ 3; k ∈ 3∗, i.e.

ak = V −1/2
∫
3

dx eikxa(x) [a(x), a∗(y)] = δ(x − y)

andv(q) = ∫R3 dx e−iqxφ(x), φ is the periodically extended two-body interaction potential.
There is no hope that the Hamiltonian (1.1) would be exactly solvable, even in the

thermodynamic sense, as it is the case for the diagonal models.
A first approach to the problem is to look for a Hartree–Fock approximation of (1.1).

Many authors followed this path. This is done in a straightforward way in, see for example,
[12]. Considering the variational formulation of the equilibrium state, they restrict the
variational procedure to the set of quasifree states and find an upper bound for the free
energy. Unfortunately this does not state anything about the real equilibrium states being
close to the minimizing quasifree state.

The main idea of Bogoliubov’s theory of superfluidity is that switching on the interaction
in a condensed free Bose gas does not destroy the Bose condensate which should play a
dominant role in the formation of the effective interactions between the particles, i.e. only
interactions via the condensate are important. This led Bogoliubov to the following truncated
Hamiltonian:

HB
V =

∑
k 6=0

(
εk + (v(0)+ v(k))a

∗
0a0

V

)
a∗k ak +

1

2V

∑
k 6=0

v(k)(a∗k a
∗
−ka0a0+ a∗0a0a−kak)

+ 1

2V
v(0)(a∗0a0)

2. (1.2)

Remark that this is a soluble Hamiltonian [16].
In the diagrammatic language, this means that all direct interactions of the particles with

k 6= 0, i.e. above the condensate, are disregarded. It should be remarked that the indirect
interaction of these excited particles, via the condensate, as well as condensed particles, can
be due to the instability of the system (1.2), despite a direct repulsive (v(0) > 0) interaction
between them. In fact this is the case. In [16] we showed that the pressurepV (H

B
V −µNV )

diverges for chemical potentialsµ > 0, while forµ 6 − 1
2φ(0), one obtains the pressure of

the ideal Bose gas. Following the standard analysis of the theory of superfluidity [14, 15],
the physical region is preciselyµ > 0. Hence, there is some work to do in order to remedy
this basic deficiency.

The next step in the theory of Bogoliubov is the so-calledBogoliubov approximation,
which consists of the following. As the operatorsa#

0V
−1/2 almost commute for large
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volumes, they are replaced byc-numbers to be determined either from a variational principle
for the pressure [17] or by a self-consistency relation. There exists a rigorous result about
this approximation [17–19], which is valid only for the full superstable interaction (1.1). In
the Bogoliubov theory, the meaning of this result for temperature states created long debates
[20–23]. The rigorous result [16] turns out to hold here only in the regionµ 6 − 1

2φ(0).
Anyway in this approximation [16, 20–23]HB

V − µNV becomes

HBV (c, µ) =
∑
k 6=0

(εk − µ+ |c|2(v(0)+ v(k)))a∗k ak + 1
2

∑
k 6=0

v(k)(c2a∗k a
∗
−k + c2a−kak)

−µ|c|2V + 1
2v(0)|c|4V. (1.2a)

It is easy to verify (see the remark after proposition 2.2) that without further assumptions
the spectrum ofHBV (c, µ) is in general parabolic and has a gap forµ < |c|2v(0), hence not
so relevant for superfluidity. Therefore a supplementary conceptuallyad hoc condition is
usually added, namelyµ = |c|2v(0), for which model (1.2a) is still stable. This choice of the
parameter|c|2, which is at the border line of the stability domain of system (1.2a), closes the
gap in the spectrum, but it obviously creates an inconsistency with the variational principle
for pressure or ground state of (1.2a) (see [20–23]). Indeed, the relationµ = |c|2v(0)
results from the minimization of only the last two terms of (1.2a), called the Landau part
of the thermodynamic potential.

Hence, despite the stabilization of the Bogoliubov Hamiltonian (1.2) by the Bogoliubov
approximation which suppresses condensate fluctuations, one still faces an oppressive
alternative: either to follow a thermodynamic variational principle for the pressure and
obtain a gap in the spectrum, or to insist on the relation fixingµv(0) = |c|2 and working
out arguments in favour of it, which are out of the frame of the theory of Bogoliubov. For
instance, one can refer to some kind of ‘renormalized’ Bogoliubov theory [20–22]. In view
of the above difficulties, our aim is to first try a construction of a model of the same type
as the Bogoliubov one, but which is free from basic obscurities, as discussed above.

First we stabilized the Bogoliubov Hamiltonian (1.2) by adding the ‘forward scattering’
repulsive interactions between particles above zero mode (k 6= 0) and propose the
Hamiltonian:

H̃V = HB
V +

1

2V
v(0)

∑
k,k′ 6=0

a∗k a
∗
k′ak′ak (1.2b)

whereHB
V is defined in (1.2), such that̃HV −µNV is stable forµ ∈ R. In fact, Bogoliubov

[2] himself proposed this model. The additional term12v(0)NV (NV − 1) however, which
he declared to be a ‘constant’ despite the fact that the HamiltonianHBV (c, µ) is not gauge
invariant. System (1.2b) is nevertheless exactly soluble in the grand canonical ensemble
[13]. In this paper we discuss its solutions, which show properties not shared by superfluid
liquids (see further).

In [13, 16], we introduced a modification of (1.2b), i.e. retaining the ‘forward scattering’
repulsive interactions, in fact we started from the imperfect Bose gas Hamiltonian [24–26],
added the Bogoliubov terms∑

k 6=0

|c|2((v(0)+ v(k))a∗k ak + 1
2

∑
k 6=0

v(k)(b2a∗k a
∗
−k + hc)

and proposed the following model:

H̃V (b) =
∑
k 6=0

(εk + |b|2v(k))a∗k ak + 1
2

∑
k 6=0

v(k)(a∗k a
∗
−kb

2+ b2
a−kak)+ 1

2v(0)NV (NV − 1).

(1.3)
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Remark that in theN2
V /V -term of the imperfect Bose gas contribution we do not consider

the approximationa0 ≈
√
V b, but we keep the full operatora0. The Hamiltonian contains

a constantb, which is to be determined as a function solely of the condensate.
The idea is that, within some range of temperature and density, the perturbational

diagrammatic approach yields an effective Hamiltonian involving ‘dressed’ Bosons, see e.g.
[23]. This Hamiltonian has the imperfect Bose gas as a main part which is soluble. The
perturbational part of it contains residual interactions between quasiparticles, which are in
fact not the original ones, but renormalized ones, in due case non-local and long ranged.
That b is a constant solely dependent on the condensate, i.e. on the expectation valuesc

of a0√
V

, means in particular, that the ground-state fluctuations are driven to zero in these
interaction terms. The problem which we explore is, how such a Hamiltonian might yield
the equilibrium states with the desired properties of a superfluid phase? This is the very
spirit of Bogoliubov’s approach. We start from his original idea that condensation takes
place in thek = 0 mode, and the main interactions are between(k,−k)-pairs via the non-
fluctuating zero mode. Our programme started in [16], where we showed, using standard
means of quantum statistical mechanics, that models (1.3) are thermodynamically stable and
yield the correct (i.e. linear for smallk) spectral properties to ensure its relevance for the
theory of superfluidity. In [13], we gave a variational solution of one of the models (1.3)
namely forb = c.

The aim of this paper is to refine the previous model to ensure a decent thermodynamic
behaviour. We consider in particular two versions of (1.3), namely the model

H̃V (b = c) (1.3a)

and the model

H̃V (b = c
√
r(|c|2)) (1.3b)

wherer is a suitably chosen function: the parameterc ‘renormalized’ by fluctuations of the
condensate. We show that model (1.3a) does not have satisfactory thermodynamics, while
(1.3b) ensures it for a proper choice ofr(|c|2).

The structure of the paper is as follows. In section 2, we rigorously formulate our
variational problem and the main statements about the equilibrium states and the spectral
properties for models (1.2) and (1.3). The thermodynamic properties of these models are
discussed in section 3. Section 4 contains a discussion of the results.

2. Symmetry considerations and spectra

The approach we shall follow throughout the paper to derive the solutions of the various
interacting-Boson models under consideration is based on the variational principle for the
free energy or pressure. For convenience, we shall first sketch the procedure in general
terms and afterwards specialize it to particular models.

A general (infinite-volume) stateω of a Bose system is determined if all its correlation
functions:ω(a∗(f1) . . . a

∗(fn)a(g1) . . . a(gm)), for all n,m > 0 and all test functionsfi, gi ,
are known.

A particular class of states, called quasifree states [27], is defined by the property that
all its correlation functions can be expressed as sums of products of one- and two-point
correlations:

if Q1...n =
n∏
i=1

(a#(fi)− ω(a#(fi))) (2.1)
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then

ω(Q1...n) =
∑
P∈P

ω(QP1) . . . ω(QPr ) (2.2)

where the sum runs over the setP of all partitionsP = {P1, . . . , Pr} of {1, . . . , n} into
two-point setsPi , and the operators within eachPi are in the same order as inQ1...n.

Let us now consider a model defined by the finite-volume HamiltoniansHV . For each
translation-invariant (general) stateω, one defines particle-, energy- and entropy-densities
by:

n(ω) = lim
V→∞

V −1ωV (NV ) (2.3)

e(ω) = lim
V→∞

V −1ωV (HV ) (2.4)

s(ω) = lim
V→∞

V −1S(ωV ) (2.5)

respectively, whereNV =
∑

ka
∗
k ak is the particle-number operator inV , ωV denotes the

restriction of the stateω to local observables in the volumeV andS(ωV ) is its entropy.
The variational principle of statistical mechanics is as follows. The equilibrium states of

the modelHV at inverse temperatureβ = (kT )−1 and particle densityρ are the minimizers
of the free energy:f (ω) = e(ω) − β−1s(ω), over all translation-invariant statesω, such
that n(ω) = ρ.

It is convenient to take into account the constraint by the Lagrange multiplier method.
One defines:

pµ(ω) = f (ω)− µ(n(ω)− ρ) (2.6)

and solves the unconstrained minimum problem forpµ. Let ωβ,µ denote the minimizer of
pµ, µ ∈ R; one determinesµ(ρ) from the subsidiary condition:

n(ωβ,µ) = ρ. (2.7)

Thenωβ,µ(ρ) is an equilibrium state andpµ(ρ)(ωβ,µ(ρ)) is the equilibrium pressure functional
corresponding toβ andρ. Note that the physical pressure equals−pµ(ω).

A modelHV is exactly solvable if the associated energy density (2.4) is expressed solely
in terms of the one- and two-point functions ofω, i.e. ω(a#(x)) andω(a#(x)a#(y)). In
such cases, the variational principle can be simplified considerably, in that the minimum
of pµ (2.6), can be taken only within the class of quasifree states. Indeed, every stateω

determines a quasifree stateωqf : it has the same one- and two-point correlations asω,
and, of course, all its higher correlations are put equal to zero. Then,n(ωqf ) = n(ω)

and, by assumption,e(ωqf ) = e(ω). Moreover, it is always true (cf for example [28]) that
s(ωqf ) > s(ω). Therefore,pµ(ωqf ) 6 pµ(ω) for all statesω, the assertion follows.

As already pointed out, models (1.2)–(1.2b) and (1.3) presented in the introduction
are exactly solvable. In order to apply the variational principle, we need a convenient
parametrization of the set of quasifree states.

First, we consider the one-point function:

ω(a(x)) =: c (2.8)

as a parameter characterizing thek = 0 mode, for example we have for finiteV ,
ω(a0) = V 1/2c andω(a∗0a0) = V |c|2.

The two-point correlations are more conveniently described in Fourier representation,
i.e. we take the functionsω(a∗k ak) andω(a∗k a

∗
−k) = ω(a−kak) for k ∈ R3\{0} as non-trivial

parameters.
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Remark that we consider quasifree states which are not necessarily gauge invariant,
which enables us to take into account spontaneous symmetry breaking. Indeed, models
(1.2)–(1.2b) have global gauge symmetry (expressing the conservation of their particle
number); model (1.3) is not invariant under global gauge transformations, but is instead
invariant for gauge transformations in thek = 0 mode (expressing conservation of the
number of particles withk = 0). The thermodynamic limit of finite-volume Gibbs
states shares the symmetries of the Hamiltonian, but, like any equilibrium state, it has a
decomposition into ergodic states, and the latter are not necessarily preserving the symmetry
of the Hamiltonian. The quasifree minimizers we are looking for are the ergodic equilibrium
states [27]. In both cases (1.2b) and (1.3), it can be checked that, in a minimizing state
ω, the phases of the complex numbersω(a∗k a

∗
−k) are independent ofk: for model (1.2b)

they equal the phase ofc2, while for (1.3) they equal the phase ofb
2
, which—by the self-

consistency equations—should be put equal to that ofc2. Thereby, the energy densitye(ω)
is independent of this phase. Therefore, ifc 6= 0 in a minimizing stateω, then all states
obtained fromω by simultaneously changing the phases ofω(a∗k a

∗
−k) and ofc2 will also be

minimizers.
So, for simplicity of the presentation, we shall assume henceforth, without any loss,

that c andω(a∗k a
∗
−k) are reals (and, of course,b ∈ R in (1.3)). Also, becauseεk = ε−k and

vk = v−k, one can assumeω(a∗k ak) = ω(a∗−ka−k).
In order to compute (and express in a simple form) the entropy functionals(ω), it is

convenient to use another parametrization of the set of quasifree states. The new parameters
will be a triple (c, mk, αk) (k ∈ R3\{0}), wherec ∈ R is again the one-point function, and
mk, αk are real-valued, even functions, subject to the constraint:

mk > 1 ∀k ∈ R3\{0}. (2.9)

The old parameters are expressed in terms of(mk, αk) by:

ω(a∗k ak) = 1
2(mk cosh 2αk − 1) ω(a∗k a

∗
−k) = − 1

2mk sinh 2αk. (2.10)

It is clear that constraint (2.9) expresses the positivity ofω.
The new parameters appear naturally by going, via a Bogoliubov transformation, to a

gauge-invariant formulation ofω, i.e. in terms of new Boson operatorsb#
k :

ak = bk coshαk + b∗−k sinhαk a−k = b−k coshαk + b∗k sinhαk (2.11)

such thatω(b∗kb
∗
−k) = 0. The latter equation definesαk = α−k, andmk = m−k is taken as

mk = 2ω(b∗kbk)+ 1. (2.12)

In the gauge-invariant formulation, and using equation (2.12), the entropy density
functional is calculated without difficulty and it has the following expression [29]:

s(ω) = 1

(2π)3

∫
dk

(
mk + 1

2
log

mk + 1

2
− mk − 1

2
log

mk − 1

2

)
. (2.13)

Taking into account (2.10), it is now an easy matter to compute the functionalpµ(ω)

entering the variational principle. We consider separately models (1.2b) and (1.3).

2.1. Model (1.2b)

One has to minimize with respect to (c,mk, αk):

pIµ(ω) =
1

2(2π)3

∫
dk [(εk + c2vk)(mk cosh 2αk − 1)− c2vkmk sinh 2αk]
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+ 1
2v(0)n(ω)

2− µ(n(ω)− ρ)

− 1

β(2π)3

∫
dk

(
mk + 1

2
log

mk + 1

2
− mk − 1

2
log

mk − 1

2

)
(2.14)

where:

n(ω) = c2+ 1

2(2π)3

∫
dk (mk cosh 2αk − 1). (2.15)

The stationarity conditions (Euler equations) forpIµ(ω) read as:

cJ (x(ω), c2) = 0 (‘condensate equation’) (2.16)

tanh 2αk = c2v(k)

εk + x(ω)+ c2v(k)
k 6= 0 (2.17)

1

β
log

mk + 1

mk − 1
= (εk + x(ω)+ c2v(k)) cosh 2αk − c2v(k) sinh 2αk k 6= 0 (2.18)

where the following notation has been used:

J (x, y) := x + 1

2(2π)3

∫
dk vk

[
εk + x
Ek(x, y)

coth
βEk(x, y)

2
− 1

]
(2.19)

with

Ek(x, y) = [(εk + x + yv(k))2− (yv(k))2]1/2 (2.20)

wherex(ω) denotes the functional:

x(ω) = v(0)n(ω)− µ. (2.21)

System (2.16)-(2.18) can be reduced to a system of two equations for two unknowns
(x, y) ∈ R2

+ as follows. If (c,mk, αk) is a solution to (2.16)–(2.18), denotex the value of
x(ω) in this solution (cf equations (2.21) and (2.15)) andy = c2. Due to equations (2.17)
and (2.18) being fulfilled, one can expressmk, αk in terms ofx andy alone. Plugging these
expressions into the r.h.s. of (2.21) and simply using the definitions ofx, y in equation (2.16),
one obtains:

x + µ = v(0)I (x, y) (2.22)

yJ (x, y) = 0 (2.23)

where we defined:

I (x, y) = y + 1

2(2π)3

∫
dk

(
εk + x + yv(k)
Ek(x, y)

coth
βEk(x, y)

2
− 1

)
. (2.24)

Let us remark that, because of equation (2.17), one necessarily hasx = x(ω) > 0.
Conversely, if(x, y) ∈ R2

+ is a solution of system (2.22)–(2.23), one can recover a
solution of (2.16)–(2.18), which we denoteω(x, y), by putting:

c = √y αk = 1

2
tanh−1

(
yv(k)

εk + x + yv(k)
)

mk = coth
βEk(x, y)

2
. (2.25)

The result concerning the equilibrium states for model (1.2b) is as follows.

Proposition 2.1.In an equilibrium stateωβ,µ, either: (i)y = 0 andx is the unique positive
solution of the equation

x + µ = v(0)I (x, 0) = v(0)

2(2π)3

∫
dk

(
coth

β(εk + x)
2

− 1

)
(2.26)

or (ii) y 6= 0, and(x, y) is a solution of (2.22)–(2.23) withx > 0.
In fact, a valueµ1 exists, such that the alternative (i) is obtained forµ ∈ (−∞, µ1)

and the alternative (ii) forµ ∈ (µ1,∞), whereµ1 is to be calculated by equatingpµ1 in
the stationary points corresponding to the two alternatives.
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Proof. The proof relies mainly on the properties of the set of solutions(x, y) of
equation (2.23), which is independent ofµ. This set is made of two disconnected parts: the
half-axis {y = 0, x > 0} and the solutions ofJ (x, y) = 0. To show that the two parts are
disconnected, we take advantage of the fact thatJ (x, y) (see equation (2.19)) is manifestly
a strictly decreasing function ofy for every fixedx > 0, and moreover:

J (x, 0) > x (2.27)

lim
y→∞ J (x, y) = x −

1

2(2π)3

∫
dk v(k) =: x − xmax. (2.28)

These properties allow us to solve equation (2.23) with respect toy for everyx ∈ [0, xmax);
in this way, the set of solutions ofJ (x, y) = 0 is the graph of a functionη : [0, xmax)→ R+.
Clearly,η(x) > 0 for all x, and limx↗xmax η(x) = +∞, so minη > 0. The solutions of the
system (2.22)–(2.23) are the intersection points of the above disconnected set, with the set
S(µ) of solutions of equation (2.22), which depends in a monotonous way onµ. (A more
detailed description ofS(µ) will be given in lemma 3.1.) It follows that the only possible
solution with x = 0, y 6= 0, namely (0, η(0)) may occur for at most one value ofµ. We
postpone the proof that (0, η(0)) never corresponds to a minimum to the next section.�

In order to give a clearer physical interpretation of the behaviour of model (1.2b),
we construct the effective HamiltonianH eff(ωβ,µ) in the quasifree equilibrium stateωβ,µ
minimizing pµ(ω).

A formal way of finding the effective Hamiltonian for a given local HamiltonianHV in
such an equilibrium stateωβ,µ in general, amounts to finding a HamiltonianH eff, bilinear
in the creation and annihilation operators, such that, for any observablesA,B,C:

lim
V→∞

ωβ,µ(B[HV − µNV ,A]C) = lim
V→∞

ωβ,µ(B[H eff
V , A]C). (2.29)

In order to solve our problem here, it is sufficient to chooseB = C = 1 and to take
alternativelyA = a∗k for all k (including k = 0). One obtains, withωβ,µ = ω(x, y) (cf
equation (2.25)):

H eff
V (ωβ,µ) = J (x, y)(a∗0 −

√
y)(a0−√y)+

∑
k 6=0

Ek(x, y)b
∗
kbk + cV (x, y) (2.30)

whereb#
k and the originala#

k are related by the Bogoliubov transformation (2.11), in which
αk is solution (2.25),cV (x, y) is an explicit function of parametersx, y.

Using this picture (2.30), one has the following.

Proposition 2.2 (spectral properties of model (1.2b)).Model (1.2b) behaves like a sys-
tem of free quasiboson particles and collective excitations with the spectrum
{J (x, y) ∪ (∪k 6=0Ek(x, y)|x, y solutions of equation (2.23))}

Remark that inequality (2.27) implies that, in the normal phase, the quasiparticle
eigenvalueJ (x, y) is embedded in the continuous spectrum of collective excitations. On
the other hand, ify 6= 0, the eigenvalueJ (x, y) = 0 (see the condensate equation (2.23)),
while

lim
k→0

Ek(x, y) = E0(x, y) =
√
x(x + 2yv(0)) > 0. (2.31)

Therefore, there is a gap in the spectrum in the condensed phase. Moreover, the behaviour
of the dispersion lawEk(x, y) at low momenta is parabolic:

Ek(x, y) ≈ E0(x, y)+ 2x + yv(0)
2E0(x, y)

εk + · · · (k→ 0). (2.32)

Clearly, the spectral properties of model (1.2b) differ drastically from the usual Landau
picture of the superfluid phase.
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Remark. The original Bogoliubov model (1.2a) can be considered within the same
variational approach. One obtains for it exactly the same equations (2.16)–(2.18), but
with x(ω) defined as

x(ω) = v(0)y − µ. (2.33)

The corresponding system of two equations forx, y ∈ R2
+ becomesx = v(0)y − µ and,

again, the condensate equation (2.23). As the set of solutions of the latter is not connected
(cf the proof above), it follows that a solution withy 6= 0 cannot be obtained continuously
from the non-condensed ones, and, moreover, that the correspondingx does not vanish
(spectral gap). In fact, as we proved in [16], no states corresponding to solutions(x, y)

associated withµ > 0 can be obtained as limit (grand-canonical) Gibbs states for (1.2a).

2.2. Models (1.3)

One has to minimize with respect to(c,mk, αk), the pressure

pIIµ (ω, b) =
1

2(2π)3

∫
dk [(εk + b2v(k))(mk cosh 2αk − 1)− b2v(k)mk sinh 2αk]

+1

2
v(0)n(ω)2− µ(n(ω)− ρ)

− 1

β(2π)3

∫
dk

(
mk + 1

2
log

mk + 1

2
log

mk − 1

2

)
(2.34)

where, as before,n(ω) is given by equation (2.15). Among the minimizing states at a given
µ, which are of course, labelled byb, one has to select those for whichb is related to
the one-point functionc according to the self-consistency equations of the models (1.3) or
(1.3a), (1.3b).

The Euler equations forpIIµ (ω, b) are:

cx(ω) = 0 (2.35)

tanh 2αk = c2vk

εk + x(ω)+ b2v(k)
(2.36)

1

β
log

mk + 1

mk − 1
= (εk + x(ω)+ b2v(k)) cosh 2αk − b2vk sinh 2αk (2.37)

wherex(ω) is defined as before by equation (2.21). The self-consistency equation should
be added to (2.35)–(2.37) as a separate equation.

In the same way as for model (1.2), any solutions of (2.35)–(2.37) can be expressed in
terms of a solution(x, y) ∈ R2

+ of the system of two equations:

xy = 0 (2.38)

1

v(0)
(x + µ) = y + 1

2(2π)3

∫
dk

(
εk + x + b2v(k)

Ek(x, c2)
coth

βEk(x, b
2)

2
− 1

)
(2.39)

by the following formulae

c = √y αk = 1

2
tanh−1 b2v(k)

εk + x + b2v(k)
mk = coth

βEk(x, b
2)

2
. (2.40)

Therefore, by simply looking at equations (2.38)–(2.39), one can express the following
alternative for the equilibrium states of the models defined by the Hamiltonian (1.3),
irrespective of whether we considerb as a fixed parameter of the model, or select it in
terms ofc according to the self-consistency equations (1.3a) or (1.3b).



4904 N Angelescu et al

Proposition 2.3.In an equilibrium state of models (1.3), either: (i)x = 0 and equation (2.39)
provides a solutiony = y(b2, µ) > 0, or (ii) y = 0 and equation (2.39) provides a solution
x = x(b2, µ) > 0.

In order to be more precise, we shall consider separately two cases.
(1) b is a fixed real parameter. Remark that such a model has the unpleasant aspect of

containing a parameter without any physical significance or origin. Therefore, at this point,
the model should be considered as anartefact, invented in order to analyse the role played
by the individual different terms in the Hamiltonian (1.3).

In this case, the alternative (i) (i.e.x = 0) holds forµ > µcr(b) and the alternative (ii)
for µ 6 µcr(b), where

µcr(b) = v(0)

2(2π)3

∫
dk

(
εk + b2v(k)

Ek(0, b2)
coth

βEk(0, b2)

2
− 1

)
. (2.41)

Indeed, ifx = 0, equation (2.39) becomesy = v(0)−1(µ − µcr(b)), which is positive for
µ > µcr(b); if y = 0, then, because the r.h.s. of equation (2.39) is strictly decreasing in
x, a positive solution to it will exist if, and only if, the value of the l.h.s. atx = 0, i.e.
v(0)−1µ is less than the r.h.s. atx = 0, i.e. thanv(0)−1µcr(b).

(2) b2 = y(b2, µ) = c2 (the self-consistency equation (1.3a)). Upon usingb2 = y = c2,
equation (2.39) becomes exactly equation (2.22).

If y = 0, it reads:

1

v(0)
(x + µ) = 1

2(2π)3

∫
dk

(
coth

β(εk + x)
2

− 1

)
= I (x, 0) (2.42)

which has a unique positive solution if, and only if,

µ 6 µcr := v(0)I (0, 0). (2.43)

If x = 0, equation (2.22) becomes

1

v(0)
µ = I (0, y). (2.44)

As limy→∞ I (0, y) = +∞, equation (2.44) will have solutions for all

µ > µ
cr
= min

y>0
I (0, y). (2.45)

As µ
cr
6 µcr , there exist solutions for allµ, either of type (i), or of type (ii).

Constructing in the same way as above (cf equation (2.29)), the effective Hamiltonian
for this model ((1.3a), (1.3b)) in an equilibrium state, we obtain:

H eff
V = xa∗0a0+

∑
k 6=0

Ek(x, y)b
∗
kbk + cV (x, y). (2.46)

If the stateω is normal (y = 0), thenEk(x, 0) = εk + x, thereforex = limk→0Ek(x, 0)
and there is no gap in the spectrum. Ifω is a condensed state, thenx = 0 in view of the
condensate equation (2.38) and hence also limk→0Ek(0, y) = 0, therefore the spectrum is
again gapless.

Moreover, the dispersion law behaves linearly atk ≈ 0:

Ek(0, y) =
√
εk(εk + 2yv(k)) ∼

√
yv(0)

2m
|k|. (2.47)

This behaviour of the excitation spectrum is in accordance with Landau’s criteria for
superfluidity.
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Finally, it is instructive to look upon our results on the spectra of models (1.2b) and (1.3)
in an equilibrium state from the point of view of the Goldstone theorem. For equilibrium
states the Goldstone theorem is normally formulated in terms of cluster properties. More
precisely, it states that if the correlations decay fast enough, then there is no spontaneous
symmetry breaking [30]. On the other hand, for ground states and short-range interactions,
the Goldstone theorem states that, if there is spontaneous symmetry breaking, then the
Hamiltonian spectrum has no gap [31]. As we are able to derive the spectral properties for
our models, we take the advantage of discussing our spectral results in the context of the
symmetry of breaking showing up in the models.

Model (1.2b) is gauge invariant, because the Hamiltonian commutes with the total
number operatorNV . For densitiesρ larger than critical, the gauge symmetry is
spontaneously broken. We remark that we found nevertheless an energy gap.

Models (1.3) are gauge invariant only for the zero mode gauge transformations, i.e. the
Hamiltonian commutes with the zero momentum occupation number operatora∗0a0. For
large densities, in the condensed phase, again the symmetry is spontaneously broken, and
our result yields no energy gap, now in accordance with the Goldstone theorem.

Remark that all models, (1.2b) as well as (1.3), can be looked upon as perturbations of
the imperfect Bose gas, which itself is described by the Hamiltonian

HIM
V =

∑
k

εka
∗
k ak +

1

2
v(0)

N2
V

V
. (2.48)

This is a mean-field model and, as such, with long-range interactions. The spectrum of this
model in the condensed phase does not show a spectral gap, as for model (1.3) and unlike
model (1.2), and in accordance with the Goldstone theorem. On the other hand, this model
has a parabolic behaviour at low momenta, like model (1.2b), making it unsuitable for the
description of superfluidity.

3. The thermodynamics of the models

In the previous section, we discussed the spectral properties of models (1.2b) and (1.3a),
(1.3b) in the states fulfilling the necessary conditions for a minimum of the pressure. The
analysis should be completed by comparing the values ofpµ(ω) at its various stationary
points, in order to pick up the absolute minimum. We shall consider first models (1.2)
and (1.3a). Let us remind at this point that, upon using inpIIµ (ω, c) the self-consistency
equation (1.3a), one obtains the same functionalpµ(ω) for both models under consideration.
Using part of the Euler equation, we reduced the problem of finding the stationary points of
pµ(ω) to that of finding the solution of a system of two equations for two positive unknowns
((2.22), (2.23) for model (1.2b), and (2.22), (2.38) for (1.3a)).

For arbitrary positive values of the two variablesx, y, equation (2.25) provides a
quasifree stateω(x, y). Our task now is to pick up the lowest value of

pµ(ω(x, y)) = v(0)

2
I (x, y)2− µ(I (x, y)− ρ)

+ 1

2(2π)3

∫
dk

[
2

β
log 2 sinh

βEk(x, y)

2
− (εk + x + yv(k))

]
−x 1

2(2π)3

∫
dk

(
εk + x + yv(k)
Ek(x, y)

coth
βEk(x, y)

2
− 1

)
(3.1)

among the solutions(x, y) of the above-mentioned system. As a first step, we shall use
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equation (2.22):v(0)−1(x + µ) = I (x, y), to transform equation (3.1) into:

pµ(x, y) = −
(x + µ)2

2v(0)
+ xy + µρ

+ 1

2(2π)3

∫
dk

[
2

β
log 2 sinh

βEk(x, y)

2
− (εk + x + yv(k))

]
. (3.2)

Clearly,pµ(ω(x, y)) = pµ(x, y) on the setS(µ) of solutions(x, y) of equation (2.22),
but they are certainly different outsideS(µ). However,

∂pµ

∂x
(x, y) = −x + µ

v(0)
+ I (x, y) ∂pµ

∂y
(x, y) = J (x, y) (3.3)

so the stationary points ofpµ(x, y) are given by the system (2.22), (2.23), and therefore
coincide with the stationary points ofpµ(ω(x, y)) in R2

+.
At this stage, a more detailed description of the setsS(µ) and their dependence onµ

is necessary.
Taking into account thatI (x, y) is strictly decreasing inx at fixedy > 0, equation (2.22)

has at most one solutionx = ξ(µ, y) for givenµ, y, and this solution exists if, and only
if, y ∈ D(µ), where

D(µ) =
{
y > 0 :

1

v(0)
µ 6 I (0, y)

}
. (3.4)

Otherwise stated,S(µ) is the graph of the functionξ(µ, ·) : D(µ)→ R+, defined implicitly
by:

ξ(µ, y)+ µ = v(0)I (ξ(x, y), y). (3.5)

We collect some information onS(µ) in the following lemma.

Lemma 3.1.(i) If µ1 < µ2, thenD(µ1) ⊃ D(µ2) andξ(µ1, y) > ξ(µ2, y), ∀y ∈ D(µ2).
(ii) Let

µ
cr

:= v(0)min
y>0

I (0, y) (3.6)

then, for µ 6 µ
cr

, D(µ) = R+, while for µ > µ
cr

, there exists a maximal interval
[y(µ),+∞) ⊂ D(µ), wherey(µ) > 0.

(iii) Let

µcr := v(0)I (0, 0) (3.7)

then, forµ 6 µcr , 0 ∈ D(µ), and therefore there exists a largest interval [0, y(µ)] ⊂ D(µ)
(with y(µ) < y(µ) if µ > µ

cr
andy(µ) = +∞ otherwise).

(iv) The sign of ∂ξ
∂y
(µ, y) equals sign∂I

∂y
(ξ(µ, y), y), thereforeξ(µ, ·) is an increasing

function at all points of its graph which belong to the positivity domain of∂I
∂y
(x, y). Thereby,

∂I
∂y

is positive outside a compact neighbourhood of the origin, and∂I
∂y
(x, 0) has exactly one

change from negative to positive sign asx increases from 0 to+∞.

Proof. All these properties are easy consequences of the definitions and of the properties
of I (x, y), equation (2.24).

For (i), the inclusion is obvious from definition (3.4), and the inequality follows by
taking theµ-derivative in equation (3.5):

∂ξ

∂µ
(µ, y) = −

(
1− v(0) ∂I

∂x
(ξ(µ, y), y)

)−1

< 0 (3.8)
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(because∂I
∂x

< 0, as already remarked). Properties (ii) and (iii) follow directly from
definition (3.4) and the fact that:

lim
y→∞ I (0, y) = +∞ (= O(y) at y →∞). (3.9)

Finally, (iv) follows by taking they-derivative of equation (3.5):

∂ξ

∂y
(µ, y) = v(0)∂I

∂y
(ξ(µ, y), y)

(
1− v(0) ∂I

∂x
(ξ(µ, y), y)

)−1

(3.10)

and again using∂I
∂x
< 0. To prove the statements about sign∂I

∂y
, we compute

∂I

∂y
(x, y) = 1+ y

2(2π)3

∫
dk v2(k)

(
εk + x
Ek(x, y)3

coth
βEk(x, y)

2

+ β

2(εk + x + 2yv(k)) sinh2 βEk(x,y)

2

)
− 1

2(2π)3

∫
dk

βv(k)

2 sinh2 βEk(x,y)

2

.

(3.11)

BecauseEk(x, y) >
√
εk
√
x + 2yv(k) → ∞, whenx and/ory → ∞, for all k 6= 0 such

that vk > 0, the negative term converges to 0. Fory = 0, (3.11) becomes simply:

∂I

∂y
(x, 0) = 1− 1

2(2π)3

∫
dk

βv(k)

2 sinh2 β(εk+x)
2

(3.12)

on which the statement is manifest (as 1/ε2
k is not integrable at 0). �

A few typical setsS(µ) are sketched in figure 1 ((1) for smallµ; (2) forµ 6 µcr ; (3) for
µ
cr
< µ 6 µcr ; (4) for µ > µcr ). The solutions (discussed in section 2) of the condensate

equation (2.23) (i.e.{y = 0} and the graph of the functionη(x) defined byJ (x, η(x)) = 0)
are also represented by heavy curves. Outside the broken line∂I

∂y
> 0.

∂pµ
∂y
= J is negative

at the right of the heavy curve and positive otherwise.
We are now prepared to discuss the phase transitions taking place in the two models.

Figure 1.
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3.1. Model (1.2b)

For low values ofµ, S(µ) does not intersect the graph ofy(x), so the only stationary
point is (ξ(µ, 0), 0), which is the absolute minimum. With increasingµ, S(µ), and hence
alsoξ(µ, 0), goes monotonously down, and the minimum value ofpµ, pµ(ξ(µ, 0), 0) also
decreases:

d

dµ
(pµ(ξ(µ, 0), 0)) = −I (ξ(µ, 0), 0) < 0. (3.13)

For the first value ofµ at whichS(µ) is tangent to the graph ofy(x), say in the point
(ξ(µ, y0), y0), one has

pµ(ξ(µ, 0), 0) < pµ(ξ(µ, y0), y0) (3.14)

becausepµ(ξ(µ, y), y) is increasing iny on [0, y0]; indeed,

d

dy
(pµ(ξ(µ, y), y)) =

∂pµ

∂x
(ξ(µ, y), y)

∂ξ

∂y
(µ, y)+ ∂pµ

∂y
(ξ(µ, y), y)

=
[
−ξ(µ, y)+ y

v(0)
+ I (ξ(µ, y), y)

]
∂ξ

∂y
(µ, y)+ J (ξ(µ, y), y)

= J (ξ(µ, y), y) > 0 (3.15)

where (3.3), (3.5) and the positivity ofJ outside the graph ofη(x) have been used.
Therefore, at thisµ, (ξ(µ, 0), 0) is still the absolute minimum.

For µ > µcr , D(µ) no longer contains 0 and there is no solution on the axisy = 0.
Therefore, all solutions, among which the absolute minimum, are the intersections ofS(µ)

with the graph ofη(x).
One concludes that the absolute minimum will jump at a certain intermediate value of

µ from the axisy = 0 (normal phase) to a point on the graph ofη(x), therefore one has
(at least one) first-order phase transition from a normal to a condensed phase.

Let us remark here that, by the same argument as for inequality (3.14) (cf
equation (3.15)), wheny increases, the entry points of (ξ(µ, y), y) into the region{J (x, y) 6
0} are local maxima and the exit points are local minima. If the point(0, η(0)) belongs to
S(µ), then it is always an entry point, because∂ξ

∂y
(µ, y) = 0 wheneverξ(µ, y) = 0, while

η′(0) is finite. Therefore (0, η(0)) is a local maximum. This completes the proof thaty > 0
implies x > 0, i.e. condensation implies spectral gap.

The above discussion shows that model (1.2b) is not suited to being a superfluidity
model both because it always has a spectral gap in the excitation spectrum in the condensed
phase, and because it predicts a first-order transition.

3.2. Model (1.3a)

We have shown in section 2 that system (2.38), (2.22) has solutions for everyµ ∈ R. These
can be viewed as the intersections ofS(µ) with the coordinate axis.

The solutions withy = 0 will be the same as for model (1.2), i.e. (ξ(µ, 0), 0), and the
discussion done there applies.

The solutions withx = 0, y > 0 exist forµ > µ
cr

, and they are the finite set of points
0 < y1(µ) < · · · < yn(µ), such thatξ(µ, yi) = 0; typically, yi are boundary points of
D(µ). According to the description in lemma 3.1, parts (i) and (ii), with increasingµ, these
points appear and disappear in pairs, corresponding to the appearance of a gap inD(µ)
or to the disappearance of a connected component ofD(µ). (For example, if there is at
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most one gap inD(µ) (as we conjecture, but are unable to prove for a generalvk satisfying
our assumptions), i.e.D(µ) = [0, y(µ)] ∪ [y(µ),∞), theny(µ) decreases withµ until it
reaches 0 and disappears, whiley(µ) increases.) Therefore, none of these points will grow
out from 0.

This shows that the transition from the normal to a condensed solution is achieved by
a jump ofy to a non-zero value at a certain chemical potential, i.e. it will be a first-order
transition. In [13], when we considered in detail only the nature of the equilibrium states
but not their thermodynamics of models (1.3) and (1.3a), it is stated in the introduction
that the transition is second order. We take this occasion to correct that error. Hence, a
most unpleasant feature of model (1.3a) is that the jump ofy might entail a discontinuity
of pµ(ω(x, y)) (i.e. a discontinuity in the equilibrium free energy) at the transition.

It might be instructive at this stage to remark that the unphysical model with Hamiltonian
(1.3), in whichb2 is viewed as a fixed parameter of the model (see section 2), without any
relation to the one-point function, does not suffer from this disease. There, besides the
fact that there is no gap in the spectrum, the thermodynamics is reasonable and predicts a
second-order phase transition. In this case, if we solve equation (2.39) with respect tox, we
obtain a familyξ(µ, y) of increasing functions iny, the graph ofξ(µ, ·) intersects exactly
once either thex-, or y-axis and the solutions move, with increasingµ, downwards on the
x-axis (until it reaches 0 atµ = µcr(b)) and then to the right on they-axis.

It is clear, in the geometrical language above, that technically, the origin of the jump
in the solution of model (1.3a) is the fact thatξ(µ, ·) is decreasing as a function ofy for
small y, if µ is nearµcr .

As a conclusion, models (1.3) withb (a fixed constant), provide the expected equilibrium
states and spectra of a superfluid phase and this is due to the suppressing of the interactions
with the fluctuations of thek = 0 mode. However, a superimposed self-consistency equation
such as (1.3a) may have unwanted consequences upon the thermodynamics. Now we show
that replacing (1.3a) by an equation of type (1.3b) yields a good thermodynamics (i.e.
second-order transition) without spoiling in any way the good properties of the excitation
spectrum.

3.3. Model (1.3b)

For model (1.3) we take the modified self-consistency equation (1.3b), i.e.

b = c
√
r(|c|2) (3.16)

and we show that, with a suitable choice of the renormalization functionr, model (1.3b)
is able to give a correct qualitative picture of the superfluid transition, i.e. a second-order
transition and a gapless, linear spectrum of excitations in the condensate phase. First, in
view of the spectral properties, we repeat that the effective Hamiltonian is given by (see
equation (2.46)):

H eff
V = xa∗0a0+

∑
k 6=0

Ek(x, y)b
∗
kbk + cV (x, y)

where the pair(x, y) is a solution of equations (2.38) and (2.39), yielding the alternative,
either no condensation:y = c2 = 0 andx 6= 0, or condensationy = c2 6= 0 andx = 0.
All the spectral properties remain qualitatively the same as for model (1.3a), analysed in
[13, 16], independently of the choice of the functionr, as far as limy→0 yr(y) = 0.

Finally, in order to provide a model which also shows good thermodynamic behaviour
we consider model (1.3b) with a physically reasonable choice of the functionr. We assume
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that r satisfies:
d

dy
(yr(y)) > 0 lim

y→0
yr(y) = 0 lim

y→∞ r(y) = 1 (3.17)

meaning that:
(a) the renormalized coupling of the(k,−k) pairs to the zero-mode is such that the

latter increases monotonously with the number of the condensed particles;
(b) without macroscopic occupation of thek = 0 mode there is no contribution to the

energy density coming from the interactions;
(c) there is no renormalization of the coupling in highly condensed states, i.e. forc large

one hasb ' c.
Of course, the approach used for models (1.3), (1.3a) applies here as well. One has

to minimize the pressure functional (2.34) over the set of quasifree states and one obtains
the Euler equations (2.35)–(2.37). Every solution is expressed by (2.40) to which equation
(3.16) is added as a separate equation. One arrives now at solving the following systems
of equations for(x, y):

xy = 0 (3.18)
1

v(0)
(x + µ) = y(1− r(y))+ I (x, yr(y)) =: Ir(x, y). (3.19)

As the functionIr(x, y), like I (x, y), is a strictly decreasing function ofx for fixed y, one
can solve equation (3.19) forx, to obtain the setSr(µ) of its solutions as the graph of a
function;

ξr(µ, ·) : Dr (µ)→ R+ (3.20)

defined by (3.4), (3.5) withIr replacingI .
We show now that, under assumptions onvk, one can choose the functionr(y) such

that conditions (3.17) are satisfied and, moreover:
∂Ir(x, y)

∂y
> 0 for all (x, y) ∈ R2

+ and allβ > β0 > 0 (3.21)

whereβ0 is some finite, fixed inverse temperature. (We take advantage of the fact that
superfluidity is a low-temperature phenomenon and are looking therefore at temperatures
lower than the inverse ofβ0.)

To this aim, compute

∂Ir(x, y)

∂y
= 1+ d(yr(y))

dy

(
∂I

∂y
(x, yr(y))− 1

)
(3.22)

and use (3.11) to identify the only negative term in (3.22) which we have to control. We
see that it is sufficient to find a functionr such that:
d

dy
(yr(y))

1

2(2π)3

∫
βvk

2 sinh2 βEk(x,yr(y))

2

dk 6 1 ∀(x, y) ∈ R2
+ ∀β > β0. (3.23)

We majorize the l.h.s. of (3.23), using the inequalities sinhβE

2 > βE

2 , β > β0,
Ek(x, yr(y)) > Ek(0, yr(y)), v0 > vk, by:
d

dy
(yr(y))

1

β0(2π)3

∫
vk

εk(εk + 2yr(y)v(k))
dk

6 d

dy
(yr(y))

1

β0(2π)3

∫
supp of v

v(0)

εk(εk + 2yr(y)v(0))
dk

6
d

dy (yr(y))√
yr(y)

1

β0(2π)3

∫
R3

v(0)

εk(εk + 2v(0))
dk (3.24)
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where we also used a change of variablesk → k√
yr(y)

and an extension of the integral to

R3.
The bound (3.24) shows that it is sufficient to choose the functionr under the conditions

(3.17) and such that

max
y>0

d
dy (yr(y))

′
√
yr(y)

(3.25)

is sufficiently small. Here is a fancy example of renormalize coupling

r(y) = λy

1+ λy
with λ sufficiently small.

With such a choice ofr, the analysis in lemma 3.1 shows that:

Dr (µ) =
{
R+ if µ 6 v(0)Ir (0, 0) = v(0)I (0, 0) = µcr
[yr(µ),∞) if µ > µcr

where yr(µ) is a continuous, increasing function ofµ, with y(µcr) = 0. Moreover,
ξr(µ, 0) = ξ(µ, 0) for µ 6 µcr , so that the normal phase is not affected by the change of
the self-consistency equation to (3.16). We proved this by the following proposition.

Proposition 3.1.The model

H̃3(b) =
∑
k 6=0

(εk + |b|2v(k))a∗k ak + 1
2

∑
k 6=0

v(k)(a∗k a
∗
−kb

2+ b2
a−kak)+ 1

2v(0)N3(N3 − 1)

with self-consistency equation

b = c
√
r(|c|2)

and the functionr satisfying (3.17) and (3.25), is showing Bose condensation as a second-
order phase transition and with a linear quasiparticle spectrum for smallk. �

4. Conclusions

Our study of the original Bogoliubov model (1.2) shows that to give it any rigorous sense,
one has to modify the HamiltonianHB

V .
As we discovered in [16], the systemHB

V −µNV either coincides with the perfect Bose
gas (µ 6 0) or is unstable (µ > 0).

To saveHB
V as the model of superfluidity, Bogoliubov proposed his famous substitution

of the operatorsa#
0/
√
V by c-numbers, which gives instead ofHB

V − µNV , the operator
HBV (c, µ). The consequence of this procedure is twofold:

(1) the operatorHBV (c, µ) (1.2a) becomes stable forµ < v(0)|c|2;
(2) in the thermodynamic limit one can reach the boundary of stabilityµ = v(0)|c|2,

which guarantees the absence of the gap in the Bogoliubov spectrum and finally a correct
interpretation of the superfluidity.

It is clear that the substitution proposed by Bogoliubov is a way of excluding the
fluctuations of the Bose condensate which serve as mediators for supplementary attraction
between particles (stabilization). The next problem is the choice of thec-numbers in the
Bogoliubov procedure: to close the energy gap, one has to putµ = v|c|2, but the variational
principle gives another possibility, for a discussion, see [20–22].
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That is why we proposed an alternative way to save Bogoliubov’s prescription, namely:
first stabilize the initial Bogoliubov HamiltonianHB

V by adding the ‘forward scattering’
interaction between particles above the condensate. The new HamiltonianH̃V (1.2b) is
superstable, i.e.̃HV − µNV gives a finite pressure for allµ ∈ R.

The next point is that now one can pass to the substitution of the operatorsa#
0/
√
V by c-

numbersb(·) in the Bogoliubov part of the HamiltoniañHV . But in order to take into account
fluctuations of the condensate we propose thatb(·) would be a function (‘form-factor’
of interaction with condensate) of the condensate density|c|2, for example Bogoliubov
prescription corresponds to thespecific choiceof this function namely, alinear function of
the condensate with the coefficient 1:b(c) = c.

The advantage of the model̃HV is that the corresponding̃HV (b) (1.3) is stable for all
µ ∈ R, so that we can apply a variational principle to our model (see sections 2 and 3),
which gives a solution with a gapless spectrum. We would like to stress that the latter isnot
a result of the ‘physical recipe’ inspired by the will to close the gap (see the discussion above
and [20, 21, 23]) and based essentially on the arguments outside the Bogoliubov theory (e.g.
perturbation theory arguments), but a pure consequence of theexact solutionof model (1.3)
within the class of quasifree states.

Another important observation concerns the ‘form-factor’b(c). The precise form of this
form-factor (which in fact should be, for example a result of perturbation-type calculations)
can vary the thermodynamics of the model without changing its fundamental property to
have a gapless spectrum of collective excitations. Our particular choice of this ‘form-factor’
in section 3 guarantees the proof of the convexity of the pressure.

The final point which we believe is important to mention is the problem of the spectrum
of the systemH̃V or H̃V (b). Besides the Bogoliubov spectrum of gapless collective
excitations one obtains another branch in the spectrum of excitations (sections 2 and 3)
related to zero-mode particles, i.e. to the spectrum of quasiparticles. Recent attempts to
interpret the phonon-roton excitations in superfluid4He actually lead to a combination of
the collective plus quasiparticle exciations [32, 33].

We will return to this important question in our next paper.
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[19] Buffet E, de Smedt Ph and Pulé J V 1983J. Phys. A: Math. Gen.16 4307
[20] Kobe D 1968Ann. Phys., NY47 15
[21] Hohenberg P C and Martin P C 1965Ann. Phys., NY34 291
[22] Weichman P B 1988Phys. Rev.B 38 8739
[23] Griffin A 1993 Excitations in a Bose-Condensed Liquid(Cambridge: Cambridge University Press)
[24] Davies E B 1972Commun. Math. Phys.28 69
[25] van den Berg M, Lewis J T and de Smedt Ph 1984J. Stat. Phys.37 697
[26] de Smedt Ph and Zagrebnov V A 1987 Phys. Rev.A 35 4763
[27] Manuceau J and Verbeure A 1968Commun. Math. Phys.21 293
[28] Fannes M, Sisson P N M, Verbeure A and Wolf J C 1976Ann. Phys.98 38
[29] Fannes M 1978Ann. Inst. Henri Poincar´e 28 187
[30] Martin Ph 1982Nuovo CimentoB 68 302
[31] Ezawa H and Swieca J A 1967Commun. Math. Phys.5 330
[32] Glyde H R 1992Phys. Rev.B 45 7321
[33] Blagoveshchenskii N Met al 1994Phys. Rev.B 50 16 550


