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Abstract. The theory of Bogoliubov contains the prescription of replacing the ground-state
mode% by a constanb. In a previous contribution, we showed that the Bogoliubov model
was thermodynamically unstable. We stabilized this model by adding ‘forward scattering’ terms.
In this paper we exploit the fact that it is not compulsary to talequal toc = % We show

that if b = ¢ the Bogoliubov theory does not have a satisfactory thermodynamics. We prove
that it is possible to make a proper choice of the ground-state modé, ag.a function of,

in order to obtain the correct excitation spectrum and thermodynamically a second-order phase
transition, as is compulsory for a theory of superfluidity.

1. Introduction

During the 50 years since Bogoliubov [1, 2] isolated the zero momentum condensed state
in the weakly imperfect Bose gas and applied his celebrated canonical transformation in an
attempt to give a microscopic explanation of superfluidity, relatively little progress has been
made in order to make the theory compatible with first principles. Ultimately this would
provide a really microscopic understanding of superfluidity. One of the main problems is
to show the persistence of the zero momentum Bose condensation, taking place in the free
Bose gas, in the presence of a realistic two-body interaction. This is still an open question
on the rigorous mathematical level. It is this very condensation which is the basis of the
theory of Bogoliubov.

Recent important progress in the rigorous study of the ‘diagonal models’ [3-6], i.e.
truncated versions of the full Hamiltonian which are expressed in terms of the occupation
number operators alone, on the one hand, give only partial information about the possible
behaviour of the original system and, on the other hand, do not provide the nature of the
equilibrium states. These ‘diagonal’ models are in fact only thermodynamically solvable
models and the results [3—6] are related to expectation values of observables, which are
functions of the occupation number operators. However, these results are impressive in
the sense that they show persistance of the Bose condensate in these non-trivial models.
Attempts to extend this result to non-diagonal models, for example to the so-called ‘pair
Hamiltonian’ model [7—11] or to Bogoliubov’s original weakly coupled imperfect Bose gas
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[12,13], are either far from complete, or lead to ‘unphysical’ features, such as a gap in
the spectrum of excitations, contradicting the Hugenholtz—Pines—Gavoreérbloanalysis
[14,15] about the absence of a gap (generally related to the Goldstone theorem) for the full
Hamiltonian.

To be precise, a system of identical bosons of mags a cubic boxA € R2 of volume
V = L3, with periodic boundary conditions for the wavefunctions, is described by the full
two-body interaction Hamiltonian:

1
Hy = ZSkaZak + oV Z V(@) ag A, A i (1.2)
k kik'.q
where the sum runs over the set
2w k2
=7 and fr = —.
L T 2m
ai are the boson creation/annihilation operators in the one-particleystate = v -Y2gky

x € A ke A*, i.e.
4 = V12 / dréar)  [a(),a* 0] =8 —y)
A

andv(q) = fps dx e ¢ (x), ¢ is the periodically extended two-body interaction potential.

There is no hope that the Hamiltonian (1.1) would be exactly solvable, even in the
thermodynamic sense, as it is the case for the diagonal models.

A first approach to the problem is to look for a Hartree—Fock approximation of (1.1).
Many authors followed this path. This is done in a straightforward way in, see for example,
[12]. Considering the variational formulation of the equilibrium state, they restrict the
variational procedure to the set of quasifree states and find an upper bound for the free
energy. Unfortunately this does not state anything about the real equilibrium states being
close to the minimizing quasifree state.

The main idea of Bogoliubov’s theory of superfluidity is that switching on the interaction
in a condensed free Bose gas does not destroy the Bose condensate which should play a
dominant role in the formation of the effective interactions between the patrticles, i.e. only
interactions via the condensate are important. This led Bogoliubov to the following truncated
Hamiltonian:

aia 1
H‘f = Z <sk + (v(0) + v(k))?/o) agay + —— Z v(k)(aga’ Laoao + agaoa—_ray)

k£0 2v k£0

1
+5y,0(0) (ajao)?. (1.2)

Remark that this is a soluble Hamiltonian [16].

In the diagrammatic language, this means that all direct interactions of the particles with
k # 0, i.e. above the condensate, are disregarded. It should be remarked that the indirect
interaction of these excited particles, via the condensate, as well as condensed particles, can
be due to the instability of the system (1.2), despite a direct repulsi@ ¢ 0) interaction
between them. In fact this is the case. In [16] we showed that the pressurg? — uNy)
diverges for chemical potentials > 0, while for u < —%¢(0), one obtains the pressure of
the ideal Bose gas. Following the standard analysis of the theory of superfluidity [14, 15],
the physical region is precisely > 0. Hence, there is some work to do in order to remedy
this basic deficiency.

The next step in the theory of Bogoliubov is the so-calBaboliubov approximation
which consists of the following. As the operataz§V -2 almost commute for large
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volumes, they are replaced bynumbers to be determined either from a variational principle

for the pressure [17] or by a self-consistency relation. There exists a rigorous result about
this approximation [17-19], which is valid only for the full superstable interaction (1.1). In
the Bogoliubov theory, the meaning of this result for temperature states created long debates
[20-23]. The rigorous result [16] turns out to hold here only in the regiog —%¢>(0).
Anyway in this approximation [16, 20-23} — xNy becomes

Hy (e, ) =y (e =+ PO + vODafax + 3 ) v(k)(Caa’, + Para)
k#0 k0

—lel?V + 3v(0)c|*V. (1.2a)

It is easy to verify (see the remark after proposition 2.2) that without further assumptions
the spectrum o2 (c, 1) is in general parabolic and has a gap fok |c|>v(0), hence not
so relevant for superfluidity. Therefore a supplementary conceptadillyoc condition is
usually added, namely = |c|?v(0), for which model (1.2) is still stable. This choice of the
parametefc|?, which is at the border line of the stability domain of system#),.2loses the
gap in the spectrum, but it obviously creates an inconsistency with the variational principle
for pressure or ground state of (&)2(see [20-23]). Indeed, the relatign = |c|?v(0)
results from the minimization of only the last two terms of @),2alled the Landau part
of the thermodynamic potential.

Hence, despite the stabilization of the Bogoliubov Hamiltonian (1.2) by the Bogoliubov
approximation which suppresses condensate fluctuations, one still faces an oppressive
alternative: either to follow a thermodynamic variational principle for the pressure and
obtain a gap in the spectrum, or to insist on the relation fixing0) = |c|?> and working
out arguments in favour of it, which are out of the frame of the theory of Bogoliubov. For
instance, one can refer to some kind of ‘renormalized’ Bogoliubov theory [20-22]. In view
of the above difficulties, our aim is to first try a construction of a model of the same type
as the Bogoliubov one, but which is free from basic obscurities, as discussed above.

First we stabilized the Bogoliubov Hamiltonian (1.2) by adding the ‘forward scattering’
repulsive interactions between particles above zero made#( 0) and propose the
Hamiltonian:

~ 1
Hy = HE + ——v(0) Z apagapag (1.20)

2V KK'#0

where HY is defined in (1.2), such thaly — uNy is stable foru € R. In fact, Bogoliubov
[2] himself proposed this model. The additional teé’n(O)NV(NV — 1) however, which
he declared to be a ‘constant’ despite the fact that the Hamiltoi&@, 1) is not gauge
invariant. System (119 is nevertheless exactly soluble in the grand canonical ensemble
[13]. In this paper we discuss its solutions, which show properties not shared by superfluid
liquids (see further).

In [13, 16], we introduced a modification of (bR i.e. retaining the ‘forward scattering’
repulsive interactions, in fact we started from the imperfect Bose gas Hamiltonian [24—-26],
added the Bogoliubov terms

D 1eP(@O) + v(k)agac + 3 Y vk (bPaza”, + ho)
k=0 k=0
and proposed the following model:
Hy) = (e + bPo)aja + 3 Y vk (afa® b + ba_ray) + 20O Ny (Ny — 1).
k=0 k0
(1.3)
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Remark that in thdv\z,/v-term of the imperfect Bose gas contribution we do not consider
the approximationiy =~ +/Vb, but we keep the full operatar. The Hamiltonian contains
a constanb, which is to be determined as a function solely of the condensate.

The idea is that, within some range of temperature and density, the perturbational
diagrammatic approach yields an effective Hamiltonian involving ‘dressed’ Bosons, see e.g.
[23]. This Hamiltonian has the imperfect Bose gas as a main part which is soluble. The
perturbational part of it contains residual interactions between quasiparticles, which are in
fact not the original ones, but renormalized ones, in due case non-local and long ranged.
That b is a constant solely dependent on the condensate, i.e. on the expectationcvalues
of % means in particular, that the ground-state fluctuations are driven to zero in these
interaction terms. The problem which we explore is, how such a Hamiltonian might yield
the equilibrium states with the desired properties of a superfluid phase? This is the very
spirit of Bogoliubov's approach. We start from his original idea that condensation takes
place in thek = 0 mode, and the main interactions are betwé@en-k)-pairs via the non-
fluctuating zero mode. Our programme started in [16], where we showed, using standard
means of quantum statistical mechanics, that models (1.3) are thermodynamically stable and
yield the correct (i.e. linear for smatl) spectral properties to ensure its relevance for the
theory of superfluidity. In [13], we gave a variational solution of one of the models (1.3)
namely forb = c.

The aim of this paper is to refine the previous model to ensure a decent thermodynamic
behaviour. We consider in particular two versions of (1.3), namely the model

Hy(b =c) (1.33)
and the model

Hy (b = cy/r(cl?) (1.30)

wherer is a suitably chosen function: the parametérenormalized’ by fluctuations of the
condensate. We show that model @).8loes not have satisfactory thermodynamics, while
(1.30) ensures it for a proper choice of|c|?).

The structure of the paper is as follows. In section 2, we rigorously formulate our
variational problem and the main statements about the equilibrium states and the spectral
properties for models (1.2) and (1.3). The thermodynamic properties of these models are
discussed in section 3. Section 4 contains a discussion of the results.

2. Symmetry considerations and spectra

The approach we shall follow throughout the paper to derive the solutions of the various
interacting-Boson models under consideration is based on the variational principle for the
free energy or pressure. For convenience, we shall first sketch the procedure in general
terms and afterwards specialize it to particular models.

A general (infinite-volume) state of a Bose system is determined if all its correlation
functions: w(a*(f1) ...a*(fy)a(g) ...a(gy)), for all n, m > 0 and all test functiong;, g;,
are known.

A particular class of states, called quasifree states [27], is defined by the property that
all its correlation functions can be expressed as sums of products of one- and two-point
correlations:

if 01, =[[@ () — 0@ (fi)) (2.1)

i=1
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then
®(Q1..) =) ©(Qp)...0(Qp) (2.2)
PeP
where the sum runs over the sBtof all partitions P = {Py,..., P,} of {1,...,n} into

two-point setsP;, and the operators within eadh are in the same order as ®@;_,.
Let us now consider a model defined by the finite-volume Hamiltonfans For each
translation-invariant (general) state one defines particle-, energy- and entropy-densities

by:

n(a)):vlim V=wy (Ny) (2.3)
e(w):vlim V~twy(Hy) (2.4)
s(w):vlim V1S(wy) (2.5)

respectively, whereVy = )", a;a, is the particle-number operator ¥, wy denotes the
restriction of the state to local observables in the volunié and S(wy) is its entropy.

The variational principle of statistical mechanics is as follows. The equilibrium states of
the modelHy at inverse temperaturg = (k7)~* and particle density are the minimizers
of the free energy:f(w) = e(w) — B~ 1s(w), over all translation-invariant states such
thatn(w) = p.

It is convenient to take into account the constraint by the Lagrange multiplier method.
One defines:

pu(@) = f(w) — un(w) — p) (2.6)

and solves the unconstrained minimum problem ggr Let wg , denote the minimizer of
Pus 1 € R; one determineg.(p) from the subsidiary condition:

n(wg.u) = p. 2.7

Thenwg () is an equilibrium state ang,,,) (wg, () is the equilibrium pressure functional
corresponding t@ and p. Note that the physical pressure equalg, (v).

A model Hy is exactly solvable if the associated energy density (2.4) is expressed solely
in terms of the one- and two-point functions @f i.e. w(a”(x)) and w(@*(x)a®(y)). In
such cases, the variational principle can be simplified considerably, in that the minimum
of p, (2.6), can be taken only within the class of quasifree states. Indeed, everyvstate
determines a quasifree staig,: it has the same one- and two-point correlationswas
and, of course, all its higher correlations are put equal to zero. Thes,) = n(w)
and, by assumptiors(w, ) = e(w). Moreover, it is always true (cf for example [28]) that
s(wgr) = s(w). Therefore,p, (wqr) < pu(w) for all statesw, the assertion follows.

As already pointed out, models (1.2)-@)2and (1.3) presented in the introduction
are exactly solvable. In order to apply the variational principle, we need a convenient
parametrization of the set of quasifree states.

First, we consider the one-point function:

w(a(x)) =i ¢ (2.8)

as a parameter characterizing the= 0 mode, for example we have for finit¥,
w(ag) = VY2c andw(ajag) = V|c|?.

The two-point correlations are more conveniently described in Fourier representation,
i.e. we take the functions (afa;) andw(aja*,) = w(a_rax) for k € R®\{0} as non-trivial
parameters.
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Remark that we consider quasifree states which are not necessarily gauge invariant,
which enables us to take into account spontaneous symmetry breaking. Indeed, models
(1.2)-(1.D) have global gauge symmetry (expressing the conservation of their particle
number); model (1.3) is not invariant under global gauge transformations, but is instead
invariant for gauge transformations in tke= 0 mode (expressing conservation of the
number of particles withk = 0). The thermodynamic limit of finite-volume Gibbs
states shares the symmetries of the Hamiltonian, but, like any equilibrium state, it has a
decomposition into ergodic states, and the latter are not necessarily preserving the symmetry
of the Hamiltonian. The quasifree minimizers we are looking for are the ergodic equilibrium
states [27]. In both cases (b)2and (1.3), it can be checked that, in a minimizing state
w, the phases of the complex numbergs;a*,) are independent of: for model (1.D)

they equal the phase of, while for (1.3) they equal the phase E)%, which—by the self-
consistency equations—should be put equal to that ofrhereby, the energy densieyw)
is independent of this phase. Therefore¢ # O in a minimizing statev, then all states
obtained fromw by simultaneously changing the phasesvgfi{a*,) and ofc? will also be
minimizers.

So, for simplicity of the presentation, we shall assume henceforth, without any loss,
thatc andw(a;a*,) are reals (and, of coursg,c R in (1.3)). Also, because, = ¢_; and
v = Vg, ONe can assume(a;ax) = w(a*a_g).

In order to compute (and express in a simple form) the entropy functiangl it is
convenient to use another parametrization of the set of quasifree states. The new parameters
will be a triple ¢, my, ax) (k € R®\{0}), wherec € R is again the one-point function, and
my, oy are real-valued, even functions, subject to the constraint:

m =1 Vk € R3\{0}. (2.9)
The old parameters are expressed in termé&mf o) by:
w(aiar) = %(mk coshzy — 1) w(aga*,) = —%mk sinh Zy;. (2.10)

It is clear that constraint (2.9) expresses the positivitypof
The new parameters appear naturally by going, via a Bogoliubov transformation, to a
gauge-invariant formulation ab, i.e. in terms of new Boson operataré:

ar = by coshoy + b*, sinhoy a_x = b_y coshoy + by sinhoy (2.12)
such thatw (b;b*,) = 0. The latter equation defineg = «_x, andm; = m_; is taken as
my = 20 (biby) + 1. (2.12)

In the gauge-invariant formulation, and using equation (2.12), the entropy density
functional is calculated without difficulty and it has the following expression [29]:

1 mk—l—l mk—l—l mk—l mk—l
= I — I . 2.1
s(w) (2n)3/dk ( > og 2 > og 2 ) (2.13)

Taking into account (2.10), it is now an easy matter to compute the functjgyal)
entering the variational principle. We consider separately modelb)(ard (1.3).

2.1. Model (1.2b)

One has to minimize with respect to, (ny, ox):
1

2(27)3 / dk [(ex 4 c?v) (my cosh 2 — 1) — c?vemy Sinh 2x]
JT

Py (@) =
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+500n(@)? — un(@) — p)

1 my+ 1 my+1 mp—1 mp — 1

—m / dk ( 5 log 5 T3 log 5 ) (2.14)

where:
1
The stationarity conditions (Euler equations) fm[[(w) read as:
cJ(x(w),c?) =0 (‘condensate equation’) (2.16)
c2v(k)
tanh 2y, = k#0 2.17
A e+ x (@) + (k) 7 @10
1 1
5109 mi + L = @ +x@) + o) cosh 2y — Pu()sinh2z kA0 (2.18)
nmy —
where the following notation has been used:
1 s+ x BEi(x,y)
= — h -1 2.1

J(x,y)i=x+ 22m)? /dk Uk |:Ek(x, » cot > i| (2.19)
with

Ep(x,y) = [(ex + x + yv(k)? = (yo(k))*]Y? (2.20)
wherex (w) denotes the functional:

x(w) = v(0)n(w) — u. (2.22)

System (2.16)-(2.18) can be reduced to a system of two equations for two unknowns
(x,y) € Ri as follows. If (¢, my, ;) is a solution to (2.16)—(2.18), denatethe value of
x(w) in this solution (cf equations (2.21) and (2.15)) ane= c¢?. Due to equations (2.17)
and (2.18) being fulfilled, one can express, ¢, in terms ofx andy alone. Plugging these
expressions into the r.h.s. of (2.21) and simply using the definitionsyin equation (2.16),
one obtains:

x4+ u=v0)I(x,y) (2.22)
yJ(x,y)=0 (2.23)
where we defined:

(2.24)

1 & +x + yv(k) BEk(x,y)
I(x,y)= — [ dk coth -1).
wn=3+ 500 | ( Ex(x, y) 2
Let us remark that, because of equation (2.17), one necessarily Bagw) > 0.
Conversely, if(x,y) € Ri is a solution of system (2.22)—(2.23), one can recover a
solution of (2.16)—(2.18), which we denaigx, y), by putting:
1 yv(k) BEk(x,y)
= = _tanht ————" PRS2
c=Vyw=, <sk+x+yv<k>> 2
The result concerning the equilibrium states for modell{Lig as follows.
Proposition 2.1.In an equilibrium statevg ,,, either: (i)y = 0 andx is the unique positive
solution of the equation
v(0) B(ex + x)
=v(0)I(x,0) = dk {coth————~ —1 2.26
vn=0010,0 = o [ai (com™ 50 1) 2
or (i) y #£ 0, and(x, y) is a solution of (2.22)—(2.23) witkh > 0.
In fact, a valueu, exists, such that the alternative (i) is obtained for (—oo, 1)
and the alternative (ii) fopx € (u1, 00), wherepu; is to be calculated by equating,, in
the stationary points corresponding to the two alternatives.

my = coth (2.25)
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Proof. The proof relies mainly on the properties of the set of solutignsy) of
equation (2.23), which is independentof This set is made of two disconnected parts: the
half-axis{y = 0, x > 0} and the solutions of (x, y) = 0. To show that the two parts are
disconnected, we take advantage of the fact ihat y) (see equation (2.19)) is manifestly
a strictly decreasing function of for every fixedx > 0, and moreover:

J(x,0) > x (2.27)
. 1 _
yILmoo J(.x, y) =X — m / dk U(k) =. X — Xmax- (2.28)

These properties allow us to solve equation (2.23) with respecfoo everyx € [0, xmax);

in this way, the set of solutions of(x, y) = 0 is the graph of a function : [0, xmax) — R..

Clearly, n(x) > 0 for all x, and lim ~ . n(x) = 400, so miny > 0. The solutions of the
system (2.22)—(2.23) are the intersection points of the above disconnected set, with the set
S(u) of solutions of equation (2.22), which depends in a monotonous way. di more
detailed description of () will be given in lemma 3.1.) It follows that the only possible
solution withx = 0, y # 0, namely (05(0)) may occur for at most one value of. We
postpone the proof that (§(0)) never corresponds to a minimum to the next sectionl

In order to give a clearer physical interpretation of the behaviour of modeb)(1.2
we construct the effective HamiltoniaH®f(wg,,) in the quasifree equilibrium stateg,
minimizing p,, (w).

A formal way of finding the effective Hamiltonian for a given local Hamiltoniéf in
such an equilibrium stateg ,, in general, amounts to finding a Hamiltoni&ft™, bilinear
in the creation and annihilation operators, such that, for any observablRsC:

Nim_wg . (B[Hy — Ny, A]C) = lim wp.(BLHE, A]C). (2.29)

In order to solve our problem here, it is sufficient to chodse= C = 1 and to take
alternativelyA = g for all k£ (including £ = 0). One obtains, withwg , = w(x,y) (cf
equation (2.25)):

HM(wp,) = J(x, y)(@ — /¥ a0 — /) + Y Ex(x, )bibe + cv(x, y) (2.30)
k#0
whereb? and the originak} are related by the Bogoliubov transformation (2.11), in which
oy is solution (2.25)¢cy (x, y) is an explicit function of parametens y.
Using this picture (2.30), one has the following.

Proposition 2.2 (spectral properties of model (1.2))odel (1.2) behaves like a sys-
tem of free quasiboson particles and collective excitations with the spectrum
{J(x,y) U (UrzoEr(x, y)Ix, y solutions of equation (2.23))

Remark that inequality (2.27) implies that, in the normal phase, the quasiparticle
eigenvalue/(x, y) is embedded in the continuous spectrum of collective excitations. On
the other hand, ify # 0, the eigenvalug (x, y) = 0 (see the condensate equation (2.23)),
while

]lci_r)noEk(x, y) = Eo(x, y) = vVx(x + 2yv(0)) > 0. (2.312)

Therefore, there is a gap in the spectrum in the condensed phase. Moreover, the behaviour
of the dispersion lawE (x, y) at low momenta is parabolic:

2x + yv(0
Er(eoy) ~ Eoey) + 2 YO0 L s (2.32)
2Eo(x, y)
Clearly, the spectral properties of model @).2iffer drastically from the usual Landau

picture of the superfluid phase.
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Remark The original Bogoliubov model (1&} can be considered within the same
variational approach. One obtains for it exactly the same equations (2.16)—(2.18), but
with x(w) defined as

x(w) =v0)y — u. (2.33)

The corresponding system of two equations for € Ri becomest = v(0)y — u and,

again, the condensate equation (2.23). As the set of solutions of the latter is not connected
(cf the proof above), it follows that a solution with# O cannot be obtained continuously
from the non-condensed ones, and, moreover, that the correspandings not vanish
(spectral gap). In fact, as we proved in [16], no states corresponding to soltions
associated withu > 0 can be obtained as limit (grand-canonical) Gibbs states foa)(1.2

2.2. Models (1.3)

One has to minimize with respect to, my, «;), the pressure
1

pllLl(w’ b) = m

/ dk [(ex + b2v(k))(my cosh 2y — 1) — b2v(k)my sinh 2]

1
+§v<0>n<w>2 — (@) — p)

1 mp+1 mp +1 my —1
_/3(271)3/dk< 5 log 5 log 5 ) (2.34)

where, as before;(w) is given by equation (2.15). Among the minimizing states at a given
wu, which are of course, labelled ky, one has to select those for whiéhis related to
the one-point functiorr according to the self-consistency equations of the models (1.3) or
(1.39), (1.30).

The Euler equations fop!/(w, b) are:

cx(w) =0 (2.35)
szk
tanh 2y, = (2.36)
& + x(w) + b?v(k)
% log ¥ + i = (ex + x(w) + b?v(k)) cosh 2y, — b?v; sinh 2y, (2.37)
ny —

wherex(w) is defined as before by equation (2.21). The self-consistency equation should
be added to (2.35)—(2.37) as a separate equation.

In the same way as for model (1.2), any solutions of (2.35)—(2.37) can be expressed in
terms of a solutior(x, y) € Ri of the system of two equations:

xy=0 (2.38)

1 1 & +x + b%v(k) BEx(x, b?)
B =y+_-_ [ dk th -1 2.39
00 = s [ ( B O 2 (2:39)
by the following formulae

1 b2u(k) BEi(x,b?)

= = "tanht 7" =coth—— "7, 2.40

c=Vy o a=gan e e ™ 2 (2.40)

Therefore, by simply looking at equations (2.38)—(2.39), one can express the following
alternative for the equilibrium states of the models defined by the Hamiltonian (1.3),
irrespective of whether we considéras a fixed parameter of the model, or select it in
terms ofc according to the self-consistency equations L& (1.3).
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Proposition 2.3.In an equilibrium state of models (1.3), either: Xi}= 0 and equation (2.39)
provides a solutiory = y(b2, u) > 0, or (ii) y = 0 and equation (2.39) provides a solution
x=x(% u) > 0.

In order to be more precise, we shall consider separately two cases.

(1) b is a fixed real parameter. Remark that such a model has the unpleasant aspect of
containing a parameter without any physical significance or origin. Therefore, at this point,
the model should be considered asaatefact invented in order to analyse the role played
by the individual different terms in the Hamiltonian (1.3).

In this case, the alternative (i) (i.2.= 0) holds foru > u.,(b) and the alternative (ii)
for u < we-(b), where

Mer () = (241)

v(0) fdk (8k+b2v(k)

2
227)? coth’BEk(o’ b — 1) .

E(0, b?) 2

Indeed, ifx = 0, equation (2.39) becomas= v(0)~*(u — w. (b)), which is positive for
w = e (b); if y =0, then, because the r.h.s. of equation (2.39) is strictly decreasing in
x, a positive solution to it will exist if, and only if, the value of the l.h.s.xat= 0, i.e.
v(0)~1u is less than the r.h.s. at= 0, i.e. thanv(0)*u., (b).

(2) b? = y(b?, n) = c? (the self-consistency equation (2)3 Upon usingh? = y = ¢?,
equation (2.39) becomes exactly equation (2.22).

If y=0, it reads:

rlo)(x +un) = 2(2717[)3 / dk (cothﬂ(sk;x) - 1) =1(x,0) (2.42)
which has a unique positive solution if, and only if,
W< ey 1= 0(0)1(0,0). (2.43)
If x =0, equation (2.22) becomes
Tlo)“ =1(0,). (2.44)
As limy_. I (0, y) = +oo, equation (2.44) will have solutions for all

w=pu =minl(0,y). (2.45)
—Cr ),20

AS i < Hhers there exist solutions for alk, either of type (i), or of type (ii).
Constructing in the same way as above (cf equation (2.29)), the effective Hamiltonian
for this model ((1.3), (1.30)) in an equilibrium state, we obtain:

Hgﬁ = xagao + Z Ei(x, Y)bibr + cv(x, y). (2.46)
k0
If the statew is normal ( = 0), thenE; (x, 0) = ¢ + x, thereforex = lim;_.o Ex(x, 0)
and there is no gap in the spectrum.alfis a condensed state, then= 0 in view of the
condensate equation (2.38) and hence als@_lE, (O, y) = 0, therefore the spectrum is
again gapless.
Moreover, the dispersion law behaves linearly at O:

0
Ex (0, y) = /ex (sx + 2yv(k)) ~ %()uq. (2.47)

This behaviour of the excitation spectrum is in accordance with Landau’s criteria for
superfluidity.
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Finally, it is instructive to look upon our results on the spectra of model®)arzd (1.3)
in an equilibrium state from the point of view of the Goldstone theorem. For equilibrium
states the Goldstone theorem is normally formulated in terms of cluster properties. More
precisely, it states that if the correlations decay fast enough, then there is no spontaneous
symmetry breaking [30]. On the other hand, for ground states and short-range interactions,
the Goldstone theorem states that, if there is spontaneous symmetry breaking, then the
Hamiltonian spectrum has no gap [31]. As we are able to derive the spectral properties for
our models, we take the advantage of discussing our spectral results in the context of the
symmetry of breaking showing up in the models.

Model (1.2) is gauge invariant, because the Hamiltonian commutes with the total
number operatorNy. For densitiesp larger than critical, the gauge symmetry is
spontaneously broken. We remark that we found nevertheless an energy gap.

Models (1.3) are gauge invariant only for the zero mode gauge transformations, i.e. the
Hamiltonian commutes with the zero momentum occupation number opeigigr For
large densities, in the condensed phase, again the symmetry is spontaneously broken, and
our result yields no energy gap, now in accordance with the Goldstone theorem.

Remark that all models, (1b2 as well as (1.3), can be looked upon as perturbations of
the imperfect Bose gas, which itself is described by the Hamiltonian

1 Ni
H‘I/M = Zeka,fak + EU(O)% (248)
k

This is a mean-field model and, as such, with long-range interactions. The spectrum of this
model in the condensed phase does not show a spectral gap, as for model (1.3) and unlike
model (1.2), and in accordance with the Goldstone theorem. On the other hand, this model
has a parabolic behaviour at low momenta, like modell)l.thaking it unsuitable for the
description of superfluidity.

3. The thermodynamics of the models

In the previous section, we discussed the spectral properties of modd} &ah@ (1.3),
(1.30) in the states fulfilling the necessary conditions for a minimum of the pressure. The
analysis should be completed by comparing the valuep,@f») at its various stationary
points, in order to pick up the absolute minimum. We shall consider first models (1.2)
and (1.2). Let us remind at this point that, upon using Ibrj’ (w, ¢) the self-consistency
equation (1.8), one obtains the same functiona)(w) for both models under consideration.
Using part of the Euler equation, we reduced the problem of finding the stationary points of
pu(w) to that of finding the solution of a system of two equations for two positive unknowns
((2.22), (2.23) for model (119, and (2.22), (2.38) for (1&).

For arbitrary positive values of the two variablesy, equation (2.25) provides a
guasifree state (x, y). Our task now is to pick up the lowest value of

0
pul@(x,y)) = Lz)ux, W2 = (x,y) — p)
1 2 . BE(x,y)
1 e +x + yv(k) BE(x,y)
~ a0 | d"( By N2 ‘1) 1)

among the solutiongx, y) of the above-mentioned system. As a first step, we shall use
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equation (2.22)w(0)~1(x + 1) = I (x, y), to transform equation (3.1) into:

_ (x4 w?
Pux,y) =— 20(0) +xy + up
1 2 - BE(x.y)
+m / dk |:,3 log 28II’1|‘1T — (g +x+ yv(k)):| . (3.2)

Clearly, p,.(w(x, y)) = p,(x, y) on the setS(u) of solutions(x, y) of equation (2.22),
but they are certainly different outsid&w). However,
op, x+u 0P,
oy KV = 20 +1(x,y) 3 (xx,y) =J(x,y) (3.3)
so the stationary points gf,(x, y) are given by the system (2.22), (2.23), and therefore
coincide with the stationary points @f, (w(x, y)) in ]Rii.
At this stage, a more detailed description of the s&}s) and their dependence gn
iS necessary.
Taking into account thatt(x, y) is strictly decreasing im at fixedy > 0, equation (2.22)
has at most one solution = &(u, y) for given u, y, and this solution exists if, and only
if, y € D(n), where

D(u)={y>0 —u <10, y)} (3.4)

v(0)
Otherwise stated§(u) is the graph of the functioa(u, -) : D(n) — R, defined implicitly
by:
E(w, )+ =vO)(Ex, y), y). (3.5)
We collect some information ofi(i) in the following lemma.
Lemma 3.1(i) If w1 < p2, thenD(u1) D D(u2) and&(ua, y) > &(uz, ), Vy € D(u2).
(i) Let
W, = v(0) min 1(0, y) (3.6)

then, foru < K, D(u) = Ry, while for u > K, there exists a maximal interval
[¥(1), +00) C D), wherey(x) > 0.

(iii) Let

e = v(0)1(0,0) (3.7)

then, foru < ., 0 € D(u), and therefore there exists a largest intervalyf)] € D(n)
(with y(p) < y(w) if /L >, andy(u) = +oo otherwise). B

(iv) The sign of > (1, y) equals signg; (g(u y), y), therefore&(u, -) is an increasing
functlon at all points of its graph which belong to the positivity doman%dfx y). Thereby,

4L s positive outside a compact neighbourhood of the origin, ?r(d 0) has exactly one
c ange from negative to positive sign.asncreases from 0 t(—:{—oo

Proof. All these properties are easy consequences of the definitions and of the properties
of I1(x, y), equation (2.24).

For (i), the inclusion is obvious from definition (3.4), and the inequality follows by
taking theu-derivative in equation (3.5):

9 al -1
785 (n,y) =— (1— v(0)— (&1, y), y)) <0 (3.8)
nw ax
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(because% < 0, as already remarked). Properties (i) and (iii) follow directly from
definition (3.4) and the fact that:

lim 7(0, y) = +o0 (=0(y) aty — 00). (3.9
Finally, (iv) follows by taking they-derivative of equation (3.5):
d I I -
aj(u, ) =v(0)— (&, y), y) (1 —v(0)— (&, y), y)> (3.10)
y dy ax

and again usin@é < 0. To prove the statements about si%n we compute

2 & +x BEi(x.y)
/dk v (k)<Ek(x, BE coth 2

al y
5(3@_)))_ +2(27'[)3

+ P ) 1 / Bu(k)
2(ex + x + 2yv(k)) sint? L) | 2(2m)3 2 sinif AL
(3.11)

BecauseE, (x, y) > /exv/x + 2yv(k) — oo, whenx and/ory — oo, for all k # O such
that v, > 0O, the negative term converges to 0. Boe 0, (3.11) becomes simply:

a1 _ 1 pu(k)
a0 =1 200y / W sin? Bt (342

on which the statement is manifest (g&2is not integrable at 0). O

A few typical setsS(u) are sketched in figure 1 ((1) for smaidl (2) for u < w.r; (3) for
K, <M< He (4) for u > 1,). The solutions (discussed in section 2) of the condensate
equat|on (2.23) (i.e{y = 0} and the graph of the functiom(x) deflned byJ(x n(x)) = 0)
are also represented by heavy curves. Outside the broke%llaeo = J is negative
at the right of the heavy curve and positive otherwise.
We are now prepared to discuss the phase transitions taking place in the two models.

&0

max

&n,0)

£u,0)

0 yluy n0) ¥y o ¥ Y

Figure 1.
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3.1. Model (1.2b)

For low values ofu, S(u) does not intersect the graph ofx), so the only stationary
point is (¢§(u, 0), 0), which is the absolute minimum. With increasipg S(u), and hence
also&(u, 0), goes monotonously down, and the minimum valugpf p,, (& (., 0), 0) also
decreases:

d
@(ﬁu(é(u, 0,0) =-1((1, 0,0 <0. (3.13)

For the first value ofx at which S(w) is tangent to the graph of(x), say in the point
(¢(i, y0), Yo), one has

P, &, 0),0) < p, W, o), yo) (3.14)
becaus@M(é(u, y), ¥) is increasing iny on [0, yo]; indeed,

(p,,@(u ), ¥) = (S(u ) y)ﬁ(u v) + ”y’“‘(é(u,w,y)

- [_5(“’”” +IEw ), y)} 8 (oy) + T EG ) )
v(0) dy

=JEW,y),y) >0 (3.15)

where (3.3), (3.5) and the positivity af outside the graph of(x) have been used.
Therefore, at thige, (£(u, 0), 0) is still the absolute minimum.

For u > .., D(u) no longer contains 0 and there is no solution on the axis 0.
Therefore, all solutions, among which the absolute minimum, are the intersectistig of
with the graph ofi(x).

One concludes that the absolute minimum will jump at a certain intermediate value of
wn from the axisy = 0 (hormal phase) to a point on the graphsgfk), therefore one has
(at least one) first-order phase transition from a normal to a condensed phase.

Let us remark here that, by the same argument as for inequality (3.14) (cf
equation (3.15)), whep increases, the entry points &f({t, y), y) into the regionJ (x, y) <
0} are local maxima and the exit points are local minima. If the png(0)) belongs to
S(w), then it is always an entry point, becau%d,u, y) = 0 whenevel (i, y) = 0, while
1'(0) is finite. Therefore (0n(0)) is a local maximum. This completes the proof that 0
implies x > 0, i.e. condensation implies spectral gap.

The above discussion shows that model §).8 not suited to being a superfluidity
model both because it always has a spectral gap in the excitation spectrum in the condensed
phase, and because it predicts a first-order transition.

3.2. Model (1.3a)

We have shown in section 2 that system (2.38), (2.22) has solutions for gvet§. These
can be viewed as the intersectionsSgft) with the coordinate axis.

The solutions withy = 0 will be the same as for model (1.2), i.&(f, 0), 0), and the
discussion done there applies.

The solutions withk = 0, y > 0 exist foru > L., , and they are the finite set of points
0 < yi(w) < -+ < y,(w), such thats(u, y;) = 0 typ|cally, y; are boundary points of
D(w). According to the description in lemma 3.1, parts (i) and (ii), with increaginthese
points appear and disappear in pairs, corresponding to the appearance of aZgap in
or to the disappearance of a connected componem®(pf). (For example, if there is at
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most one gap irD(u) (as we conjecture, but are unable to prove for a gengrahtisfying
our assumptions), i.eD(uw) = [0, y(u)] U [y(n), 00), theny(u) decreases withe until it
reaches 0 and disappears, whilg:) increases.) Therefore, none of these points will grow
out from 0.

This shows that the transition from the normal to a condensed solution is achieved by
a jump ofy to a non-zero value at a certain chemical potential, i.e. it will be a first-order
transition. In [13], when we considered in detail only the nature of the equilibrium states
but not their thermodynamics of models (1.3) and 4.3t is stated in the introduction
that the transition is second order. We take this occasion to correct that error. Hence, a
most unpleasant feature of model @).3s that the jump ofy might entail a discontinuity
of p.(w(x,y)) (i.e. a discontinuity in the equilibrium free energy) at the transition.

It might be instructive at this stage to remark that the unphysical model with Hamiltonian
(1.3), in whichb? is viewed as a fixed parameter of the model (see section 2), without any
relation to the one-point function, does not suffer from this disease. There, besides the
fact that there is no gap in the spectrum, the thermodynamics is reasonable and predicts a
second-order phase transition. In this case, if we solve equation (2.39) with respeetdo
obtain a family& (u, y) of increasing functions iry, the graph o (u, -) intersects exactly
once either ther-, or y-axis and the solutions move, with increasimgdownwards on the
x-axis (until it reaches 0 gt = ., (b)) and then to the right on the-axis.

It is clear, in the geometrical language above, that technically, the origin of the jump
in the solution of model (18 is the fact that (i, -) is decreasing as a function effor
smally, if u is nearg,,.

As a conclusion, models (1.3) with(a fixed constant), provide the expected equilibrium
states and spectra of a superfluid phase and this is due to the suppressing of the interactions
with the fluctuations of thé = 0 mode. However, a superimposed self-consistency equation
such as (1.8) may have unwanted consequences upon the thermodynamics. Now we show
that replacing (1.8) by an equation of type (143 yields a good thermodynamics (i.e.
second-order transition) without spoiling in any way the good properties of the excitation
spectrum.

3.3. Model (1.3b)

For model (1.3) we take the modified self-consistency equatioro)1i.8.

b =c\r(cl?) (3.16)

and we show that, with a suitable choice of the renormalization funetionodel (1.®)

is able to give a correct qualitative picture of the superfluid transition, i.e. a second-order
transition and a gapless, linear spectrum of excitations in the condensate phase. First, in
view of the spectral properties, we repeat that the effective Hamiltonian is given by (see
equation (2.46)):

Hgﬁ = xadao + Z Ei(x, Y)bibr + cv(x,y)
k0

where the pairx, y) is a solution of equations (2.38) and (2.39), yielding the alternative,
either no condensationy = ¢> = 0 andx # 0, or condensatioly = ¢? # 0 andx = 0.
All the spectral properties remain qualitatively the same as for modeh)(1abalysed in
[13, 16], independently of the choice of the functionas far as lim_,o yr(y) = 0.

Finally, in order to provide a model which also shows good thermodynamic behaviour
we consider model (1 with a physically reasonable choice of the functionWe assume
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thatr satisfies:
d . .
—(yr(y)) >0 limyr(y) =0 limr(y)=1 (3.17)
dy y—0 y—>00

meaning that:

(a) the renormalized coupling of thg, —k) pairs to the zero-mode is such that the
latter increases monotonously with the number of the condensed particles;

(b) without macroscopic occupation of tke= 0 mode there is no contribution to the
energy density coming from the interactions;

(c) there is no renormalization of the coupling in highly condensed states, ieldage
one has ~ c.

Of course, the approach used for models (1.3),a)l&pplies here as well. One has
to minimize the pressure functional (2.34) over the set of quasifree states and one obtains
the Euler equations (2.35)—(2.37). Every solution is expressed by (2.40) to which equation
(3.16) is added as a separate equation. One arrives now at solving the following systems
of equations for(x, y):

xy=0 (3.18)
1
W(x +u)=yA—r(y) + 10, yr(y) = L(x,y). (3.19)

As the functionl, (x, y), like I (x, y), is a strictly decreasing function af for fixed y, one
can solve equation (3.19) for, to obtain the sef, () of its solutions as the graph of a
function;

&, ) 1 Dp(p) —> Ry (3.20)
defined by (3.4), (3.5) with, replacing!.

We show now that, under assumptions @n one can choose the functioriy) such
that conditions (3.17) are satisfied and, moreover:

9l (x, y)
dy
where By is some finite, fixed inverse temperature. (We take advantage of the fact that
superfluidity is a low-temperature phenomenon and are looking therefore at temperatures

lower than the inverse gfg.)

To this aim, compute

Blr;x, M _ 1, 90700 ( (o yr(y)) — ) (3.22)
y dy
and use (3.11) to identify the only negative term in (3.22) which we have to control. We
see that it is sufficient to find a functionsuch that:

(y e ﬁiqu,zyr(m <l VoyeRl  VB>f  (329)
We majorize the lLh.s. of (3.23), using the inequalities #f—uh > %, B = Bo,
Ei(x, yr(y)) = Ex(0, yr(y)), vo = v, by:

Uk

4 roy)- o f dk

— r

dy > ﬁ(zm3 ek(ek+2yr<y>v(k>>
(y O))—=—

>0 for all (x, y) e R? and all>pp>0 (3.21)

v(0)
Bo (277) supp ofv &k (&x + 2yr(y)v(0))
d—y(yr(y)) 1 v(0)
Vyr(y) Po(2m)3 .[]R3 ex(ex + 2v(0))

(3.24)
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k

where we also used a change of variabies- L)

RS,
The bound (3.24) shows that it is sufficient to choose the funetionder the conditions
(3.17) and such that

and an extension of the integral to

Lorey
max———
20 yr(y)
is sufficiently small. Here is a fancy example of renormalize coupling
Ay
1+ Ay

with A sufficiently small.
With such a choice of, the analysis in lemma 3.1 shows that:

(3.25)

r(y) =

R, if 1 < v(0),(0,0) = v(O)I(0,0) = I,

Priw = [y, (w), 00) if w> .,

where y,(u) is a continuous, increasing function of, with y(x,) = 0. Moreover,
& (un,0) = &(u, 0) for u < ., SO that the normal phase is not affected by the change of
the self-consistency equation to (3.16). We proved this by the following proposition.

Proposition 3.1.The model

~ —2
Hy(b) = (ex + [bPv()ajax + 5 Y vk (afa b? + b a_rar) + 30(QNA(Ny — 1)
k0 k0

with self-consistency equation

b=cyr(cl®

and the function satisfying (3.17) and (3.25), is showing Bose condensation as a second-
order phase transition and with a linear quasiparticle spectrum for &mall O

4. Conclusions

Our study of the original Bogoliubov model (1.2) shows that to give it any rigorous sense,
one has to modify the Hamiltoniaf % .

As we discovered in [16], the system? — . Ny either coincides with the perfect Bose
gas {« < 0) or is unstable > 0).

To saveH{ as the model of superfluidity, Bogoliubov proposed his famous substitution
of the operators:é‘/\/V by c-numbers, which gives instead &f? — Ny, the operator
HE(c, w). The consequence of this procedure is twofold:

(1) the operatotH{-’i(c, w) (1.2a) becomes stable fqu < v(0)|c|?;

(2) in the thermodynamic limit one can reach the boundary of stability v(0)|c|?,
which guarantees the absence of the gap in the Bogoliubov spectrum and finally a correct
interpretation of the superfluidity.

It is clear that the substitution proposed by Bogoliubov is a way of excluding the
fluctuations of the Bose condensate which serve as mediators for supplementary attraction
between particles (stabilization). The next problem is the choice ot-itiembers in the
Bogoliubov procedure: to close the energy gap, one has tp ptiv|c|?, but the variational
principle gives another possibility, for a discussion, see [20-22].
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That is why we proposed an alternative way to save Bogoliubov’s prescription, namely:
first stabilize the initial Bogoliubov Hamiltonia#/? by adding the ‘forward scattering’
interaction between particles above the condensate. The new Hamiltéhiafi.2b) is
superstable, i.eH, — uNy gives a finite pressure for afl € R.

The next point is that now one can pass to the substitution of the opes§fard’ by c-
numbers(-) in the Bogoliubov part of the HamiltoniaH, . But in order to take into account
fluctuations of the condensate we propose th@t would be a function form-factof
of interaction with condensate) of the condensate derisify for example Bogoliubov
prescription corresponds to tispecific choiceof this function namely, dinear function of
the condensate with the coefficient dAéc) = c.

The advantage of the modél, is that the correspondingfy (b) (1.3) is stable for all
u € R, so that we can apply a variational principle to our model (see sections 2 and 3),
which gives a solution with a gapless spectrum. We would like to stress that the latter is
a result of the ‘physical recipe’ inspired by the will to close the gap (see the discussion above
and [20, 21, 23]) and based essentially on the arguments outside the Bogoliubov theory (e.g.
perturbation theory arguments), but a pure consequence ekt solutiorof model (1.3)
within the class of quasifree states.

Another important observation concerns the ‘form-factar’). The precise form of this
form-factor (which in fact should be, for example a result of perturbation-type calculations)
can vary the thermodynamics of the model without changing its fundamental property to
have a gapless spectrum of collective excitations. Our particular choice of this ‘form-factor’
in section 3 guarantees the proof of the convexity of the pressure.

The final point which we believe is important to mention is the problem of the spectrum
of the systemH, or Hy(b). Besides the Bogoliubov spectrum of gapless collective
excitations one obtains another branch in the spectrum of excitations (sections 2 and 3)
related to zero-mode particles, i.e. to the spectrum of quasiparticles. Recent attempts to
interpret the phonon-roton excitations in superfifiige actually lead to a combination of
the collective plus quasiparticle exciations [32, 33].

We will return to this important question in our next paper.
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